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Besides the merits, Tables 4-10 also show some 
limits: 

(a) The present approach postulates the mutual 
statistical independence of the various phase relation- 
ships which concur to define tp u. This is not strictly 
true: the consequence is that the accuracy of the sign 
indication may often be overestimated. 

(b) The procedure may fail on some occasions. For 
example, a wrong estimate of ~0 u is possible when: (i) it 
is wrongly estimated via its second representation with 
a very high probability value; luckily that occurs rarely 
if I Eul is sufficiently large; (ii) a large percentage of 
two-phase seminvariants q~u + tPv is wrongly estimated 
with high probability values. This case is not frequent 
either. 

There are several ways for improving the present 
situation: e.g. (i) to improve the estimates of the 
one-phase seminvariants by application of the concept 
of generalized representations (Giacovazzo, 1980b,c); 
(ii) to obtain improved estimates of the two-phase 
seminvariants, e.g. via their second representations; (iii) 
by application of the three-phase seminvariants. 

The work in these fields is in progress. 
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Abstract 

A figure of merit DELCRI, with estimates A 3 for the 
absolute values of the triplet phase sums ~03, is 
described for the selection of numerical values of 

0567-7394/81/050684-06501.00 

symbols used in a symbolic addition procedure. From 
tests with a number of structures crystallizing in polar 
space groups this figure of merit was found to enable 
the selection of enantiomorph-specific phase sets. 
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I n t r o d u c t i o n  

In direct-method procedures the phase determination 
critically depends either on the Y2 relation 

Y. E a sin ((Or + (OH-K -- s l (Oa I ) 
K 

tan ((OH) = ~ E a cos ((OK + (PH-K- sl(oal)" 
K 

(7) 

~. E3((OK + (OH-K) 
K 

(OH = , (1 )  
Y E3 
K 

with 

E 3 = N-1/2IEHEKEH_K[,  (2) 

or on the related tangent formula 

tan ((OH) = 

E a sin ((OK + (On-K) 
K 

E 3 c o s  ((OK + (on-g) 
K 

For each term in (1) and (3) it is assumed that the value 
of the triplet phase sum 

(O3 : -(on + (OK + (OH-K 

is most probably equal to 0. Hence the application of 
(1) or (3) tends to result in sets of centrosymmetric 
phases, in particular in polar space groups such as P21. 

Such artefacts could be avoided if (oa could be 
determined, but this is not possible in general. Only if 
suitable heavy atoms are present can (oa values be 
obtained from Bijvoet differences (Kroon, Spek & 
Krabbendam, 1977). There exist, however, methods to 
estimate I(O3I , the absolute value of (O3. Knowledge of 
this quantity could facilitate direct-method procedures, 
because the phase of a reflection H can then be found 
from 

(OH= (OK + (OH_K-- SI(O31, 

where the sign s is the only unknown. When there are 
several triplets (5) with known values (OK and (OH-K for a 
given reflection H the quantity 

q~((on) = Y E3I -  (on + (OK + (On-K-- SI(O31I (6) 
K 

will have a minimum value for approximately correct 
phases, provided that the I(O31 values are known to a 
good approximation. Expression (6) is evaluated by 
varying (OH in small steps and taking for each triplet 
that sign s which leads to the smallest sum (6). Then, 
when there is one minimum in ~, this corresponds to 
the correct (On value. Based on (5), an enantiomorph- 
specific refinement procedure has been developed (Sint 
& Schenk, 1975; Busetta, 1976; Olthof, Sint & Schenk, 
1979): 

If the I(O3I estimates and the starting phases are 
reasonable approximations the phases refine to the true 
values and the quantity 

Y Y E3 sin2 ½(--(On + (Or + (OH-K-- SI(Oal) (8) 
H K 

is minimized. It is commonly observed that I(O31 
estimates obtained by expressions such as B3, 0 (Karle 
& Hauptman, 1958) and MDKS (Fisher, Hancock & 

(3) Hauptman, 1970) are not very reliable. This is the 
limiting factor for the success of methods based on (5), 
such as those described by Hauptman, Fisher, Han- 
cock & Norton (1969) and Olthof, Sint & Schenk 
(1979). Studies by Schenk (1973) and Krieger & 
Schenk (1973) have shown that in centrosymmetric 

(4) structures the hyperbolic tangent formula is likewise 
not reliable and they suggest that the reliability of a 
triplet may be estimated on the basis of the value of 
E3/(E3)ma x. These ideas were worked out in the 
extension and refinement method described by Olthof, 
Sint & Schenk (1979), in which an empirical procedure 
was described to determine reliable I(O31 estimates from 
a relatively large starting set of phases. 

In direct-method procedures success depends 
critically on the selection of the correct set of phases. 
This selection is commonly achieved by calculating a 
figure of merit (FOM) for each possible solution. Such 
FOM's are, generally speaking, functions which are 
expected to yield extreme values for the correct set of 
phases. 

(5) In polar space groups such as P21, FOM's based on 
phase relations with probability maxima at 0 and zt tend 
to favour sets of centrosymmetric phases. To cover 
these cases three enantiomorph-specific FOM's were 
recently described (van der Putten & Schenk, 1979; 
van der Putten, Schenk & Hauptman, 1980) based on 
estimates of quartet, quintet and seminvariant phase 
sums. Although the results are encouraging when 
applied to small structures, problems are to be expected 
in applications to larger structures, since the reliability 
of the quartets, quintets and seminvariants involved will 
then be small, and their number large. 

From the above it should now be possible to test 
another enantiomorph-specific FOM based on em- 
pirical (I(O3I)E 3 v a l u e s .  In the present paper such a 
FOM, DELCRI is described. DELCRI, which is 
related to the Q criterion, is applied to a number of 
structures, both known and unknown, to illustrate its 
applicability. 
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Symbolic phases and relations 

In an automated symbolic addition procedure phase 
extension starts from a small set of reflections, the 
phases of which are either known by definition of the 
origin or represented by symbols xi. New phases are 
calculated from (4): 

M 

¢Pn = Z ( a t  x i )  + c - (0 3. (9) 
/=1 

M is the number of symbols and a t = 0 or 1. The 
numerical value c originates both from origin-defined 
phases and from space-group-imposed phase shifts. 

Next comes the stage of symbolic phase extension, 
where now phases are found by combination of several 
phases (9). Again the result is of type (9), but now the 
a t are small integers and tp 3 is a sum of tp 3 values. As 
mentioned in the introduction the common assumption 
is that ~P3 = 0. Hence the final phases are 

M 

~ou= Y. ( a t x t ) +  c. (10) 
/=1 

At the end of the symbolic addition there will be a 
number of reflections which are uniquely determined 
and given by (10). For quite a few reflections, however, 
the phase indications are not unique, and if these 
multiple phase indications are assumed to be equal in 
pairs then a number of relations is obtained of the form 

M 

Y~ (A~x  3 + C = O  (11) 
/=1 

" and C = e - e". These can be w i thA  t = a ' -  ai 
combined to give the Q FOM (Schenk, 1971): 

M 
Q = y g,'jI y. (Atx~) + Clj. (12) 

j t=1 

Wj is the sum of the individual weights of relations (11) 
with the same symbolic phase sums Y A t xv The lowest 
value of Q is considered to approximate the correct set 
of phases. 

The DELCRI figure of merit 

Whereas the assumption ~03 = 0 in (9) led to the FOM 
Q, the FOM DELCRI  is obtained by substitution of 
I(031 by its empirical estimate A 3. These estimates are 
obtained from a correlation between I~P31 and E3, 
deduced from a large number of structures in a way 
similar to that described by Olthof, Sint & Schenk 
(1979). Substitution ofA 3 for 1(031 in (5) results in 

(~H = (~K + ( f fH-K - -  sA3" (13) 

Hence the symbolic phases (9) take the form 

M 

¢Pn = ~. (ai xi) + c -  sA a, (14) 
t= I  

in which s is unknown. 
As usual, reflections are obtained with multiple phase 

indications, and in close analogy to (11) we obtain 

M 

~. ( A i x i )  + C -  s'A~ + s" A~' = 0. (15) 
i=1 

These expressions are combined to yield the analogue 
of(12): 

M 

D E L C R I  = ~,wjl ~. ( A i x i )  + C - - s ' A  3 + s 'A~3 ' I j .  
J i=1 

(16) 

DELCRI is evaluated by substituting trial values for 
the symbolic phases x i. For each term of (16) 
Z~I  (Alxi) is calculated and that one of the four 
possible values C - s' A~ + s"A~'  (see Fig. la) is 
taken which minimizes 

114 

t ~. ( A i x i )  + C - s'A'3 + s"d'3' Ij. (17) 
t = l  

When the A 3 values represent a good approximation to 
the 1(031 values, DELCRI may be expected to attain a 
minimum for the proper set of phases. 

(a) 

2~ 

(b) 

| 
--7l" 

(c) 

,I 
-Tg- 

(d)tl 
--Tg 

A B E 

tl It I I ' 6 ' " 

(l~ 1 4~ 2 ~3  

0 g 

A - - -g - -  ---W--- o 

C - s' zl~ + s" A;' --, 

Fig. 1. Some distributions of  values for C - s'A'3 + s"A'3' in the 
interval f rom - n  to n. (a), (b), (c) and (d) one, three, six and five 
values of  C - s' A' 3 + s" A'3' respectively. 
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Use of the DELCRI criterion 

Evaluation of (16) as such is quite laborious. Its 
summation involves many more terms than is the case 
for the Q criterion (12), because terms with the same 
value of ~ (A i xi) cannot be added in a straightforward 
way owing to the presence of the d 3 terms. Our 
approach has been to use a weighted arithmetic mean 
value when concentrations of (C - s 'A '  a + s"A'a')j 
values are found. This procedure is best outlined by the 
examples sketched in Figs. l(b),(c),(d). In Fig. l (d) the  
values of (C - s 'A'  3 + s"A'3' ) fall into distinct sets, 
indicated by A, B, C and D. The weighted arithmetic 
mean values of these sets are indicated by O~, ~2, Oa 
and q~4. From the figure it is obvious that the q~ values 
contribute to the FOM in much the same way as the 
original (C - s'A~ + s"A'3' ) values. Likewise the 
situation in Fig. l(b) can be reduced to three mean 
values. In the case of Fig. l(c) the values of (C -- s 'A'  3 
+ s"A~') do not form identifiable concentrations, and 
hence the corresponding relations will not contribute to 
the selectivity of DELCRI. They can therefore be 
ignored without loss of generality. 

In this way the information contained in (16) can be 
approximated by an expression with a greatly reduced 
number of terms: 

M 
DELCRI = Z Wjl • (A i x t )  + (~ , ,  ~k  . . . .  ,0, ,)1..  (18) 

j i=l  

That ~k value is selected which gives the minimum 
value for 

M 
Wyl Y (A i x i )  + ~klj .  (19) 

/=1 

A few comments are in order with respect to the use 
of (18). 

n = 1 represents centrosymmetric information, the 
corresponding terms are neglected. 

n = 4 represents too many possible values to 
contribute to the selectivity of the FOM, the correspon- 
ding terms are rejected. 

The weights Wj are obtained from the quality of the 
~ k  values; they vary between 1 and 3. 

For a reliable result it suffices to use in (18) only the 
2 M - 3 M  relations (19) with highest weights Wj. 

Ok = 0 (such as ~2  in Fig. lb) imparts to the FOM a 
tendency towards centrosymmetric solutions. Such 
values are ignored unless the corresponding (C - s 'A'  a 
+ s"A~') distribution is exceptionally good. 

It is to be expected that the lowest value of the 
DELCRI FOM obtained in this way corresponds to the 
correct phase set. 

Finally, the phase sets corresponding to minima in 
DELCRI are refined by an iterative least-squares 
technique which minimizes 

DELREF = Y. (A ix i )  + ~k  
j i j" 

(20) 

~k is chosen such that (19) is closest to 0 at the start of 
each refinement cycle. One of the low values of 
DELREF obtained in this way is expected to corres- 
pond to the proper set of phases. 

Test results of  DELCRI 

The DELCRI FOM has been applied to three known 
structures: 

(1) Diethylmalonic acid (DIEMAL) (van der Putten, 
unpublished) C7H120 4, Z = 4, N = 44, P2 v 

(2) N-cy anomethylangustifoline (ANGUST) 
(Rychlewska, Bratek & Wiewi6rowski, 1978), 
C16H23N30, Z = 2, N = 40, P2 r 

(3) 3-Chloro-l,3,4-triphenyl-2-azetidinone (AZET) 
(Colens, Declercq, Germain, Putzeys & Van 
Meerssche, 1974), C2~H16C1NO, Z = 8, N = 192, 
Pca2,.  

(4) A naphthoquinone (INDIAN) (Agarwal, Rastogi, 
van Koningsveld, Goubitz & Olthof, 1980), C24H2604, 
Z = 2, N = 56, P2,. 

(5-) Andrographolide (ANDRO) (Maulik, Ven- 
katasubramanian, Olthof & Schenk, 1981), C20H3005, 
Z = 2, N = 50, P2 r 

In all cases the interactive program system S I M P E L  
(Overbeek & Schenk, 1978) was applied for the 
symbolic addition. On the basis of triplets and quartets 
S I M P E L  selects a starting set, which is extended on the 
basis of triplets alone subject to strict acceptance 
criteria. Then DELCRI and the Y,2 consistency FOM Q 
were calculated for all trial values of the symbols. Table 
1 contains the most important results of all five 
structure determinations, which hereafter will be 
discussed in more detail. 

For DIEMAL, 200 reflections with E > 1.5, 
interrelated by 1782 triplets with E 3 > 0.55, were used 
in the symbolic addition procedure. 84 reflections could 
be phased uniquely, and approximately 70 reflections 
had multiple phase indications. Q and DELCRI were 
calculated and the two best FOM values of each kind 
are given in Table 1 in the columns headed Q 1, Q2, D 1 
and D2, respectively. It is striking that the phases 
corresponding to the Q minima are obviously centro- 
symmetric, while those corresponding to the DELCRI 
minima differ by 0 or 500 millicycles. 

The solution D 1 corresponds to the true phases and 
subsequent numerical phase extension and refinement 
solved the structure. Also, the phase set D2 led to the 
solution of the structure, although a few phases were 
incorrect and an origin shift of 0.5 along the b axis is 
present. 

With 250 reflections of ANGUST 2290 triplets with 
E 3 > 1.17 were generated. The final set of symbolically 
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Table 1. Starting sets with their symbolic phases, 
their true phases, their phases according to the two 
lowest ~.2 consistency FOM values (Q1, Q2) and 
those according to the two lowest DELCRI values 

(D1, D2) 

The phase deviations of the sets QI, Q2, D1 and D2, calculated 
for the noncentrosymmetric reflections with respect to the 
structure (PS) and the other enantiomorph (PE), are given. The 
phases and the phase deviations are given in units of 2zt/1000. 

Table 2. Average absolute values of  the errors of  the 
relationships used in the Q and DELCRI FOM's of  

Table 1 

S t r u c t u r e  Q F O M  D E L C R I  F O M  

D I E M A L  145 147  

A N G U S T  2 4 8  8 4  

A Z E T  127 58  

I N D I A N  2 1 4  118  

A N D R O  108  103  

S t ruc tu re  

D1EMAL 

ANGUST 

AZET 

INDIAN 

ANDRO 

Sym-  
bolic True  

h k l E phase  phase  QI  Q2 D1 

1 0 10 4.25 0 0 0 0 0 
0 1 10 4.11 0 0 0 0 0 
2 0 13 3.54 0 0 0 0 0 
5 3 5 2.67 A 243 500 0 162 

- 5  3 5 2.71 B 561 500 500 605 
- 3  5 6 2.79 C 996 0 0 929 

PS 0 100 76 36 
PE 154 100 76 121 

4 0 5 2.73 0 0 0 0 0 
5 1 1 2.20 852 852 852 852 852 

- 3  0 6 2.85 0 0 0 0 0 
1 5 0 2.76 A 612 310 210 680 

- 3  4 6 2.50 B 508 440 370 348 
1 6 4 3.15 C 153 190 40 164 
5 0 4 2.65 D 500 500 500 500 
0 8 3 2.65 E 427 400 230 497 

PS 0 91 87 57 
PE 133 86 88 103 

2 7 0 3.12 0 0 0 0 0 
15 3 1 2.57 984 984 984 984 984 
7 2 0 2.04 500 500 500 500 500 
8 2 0 2.85 A 500 500 500 500 
2 5 4 2.81 B 874 340 490 597 
0 5 6 2.48 C 939 260 480 378 
9 8 2 2.48 D 155 920 990 601 

17 3 3 2.60 E 69 910 960 347 
PS 0 85 60 124 
PE 133 57 81 83 

9 0 4 2-79 0 500 0 0 0 
- 1  1 2 2.43 0 929 0 0 0 
10 0 1 2-31 0 0 0 0 0 
2 6 3 3.15 A 733 50 650 874 

12 2 0 2.65 B 286 10 50 292 
- 9  4 4 3.23 C 305 0 670 392 

8 2 4 3.23 D 224 30 30 382 
3 7 3 2.79 E 324 0 40 510 

PS 0 97 115 39 
PE 181 107 135 166 

3 011 4.74 0 0 0 0 0 
4 0 9 3.65 0 0 0 0 0 
2 1 13 3.07 0 25 0 0 0 
6 0 0 3.31 A 500 500 500 0 
4 4 11 3.23 B 78 940 900 16 
0 2 15 2.35 C 463 940 960 837 
2 0 19 2.95 D 500 500 500 500 

- 6  4 2 2.51 E 606 430 400 167 

PS 0 83 88 148 
PE 58 101 86 162 

phased reflections, consisting of 70 phases expressed in 
five symbols, was used in the Q and DELCRI  
calculations. The two solutions of lowest Q and 
DELCRI  are given in Table 1. Again, the phases found 
from the Q FOM are centrosymmetric, while those 
indicated by D1 correspond to the structure. The 
structure AZET behaved similarly. The procedure was 
carried out with 500 reflections interrelated by 3022 
triplets with E 3 _> 0.40. In this case the Q solutions 
possess some non-centrosymmetry although the phases 
are not correct. Phases of the DELCRI  solution D2 led 
to the approximately correct values for the symbols. 

The DELCRI  FOM was also successful when 
D2 applied to the unknown structure INDIAN. Attempts 

0 to solve this structure with MULTAN (Germain & 
0 Woolfson, 1968) and SIMPEL failed. In the symbolic 
0 

662 addition 300 reflections with E _> 1.31 and 2690 
105 triplets with E 2 > 0.60 were used, leading to a set of 45 429 

l X6 uniquely phased reflections. From Table 1 it is clear 
111 that the sets labelled Q1 and Q2 are again approxi- 0 
852 mately centrosymmetric. The DELCRI  FOM yielded 

0 six phase sets with equally low DELREF values; after 185 
854 phase extension and refinement applying the tangent 
669 formula (3) the set labelled D1 corresponded to an 500 

2 interpretable Fourier map. It can be noted that the 
71 reflection 904 was wrongly phased in all Q and 104 
0 DELC.RI solutions; this origin-defining reflection ap- 

984 parently did not fix the origin. From a post mortem 500 
5oo examination of the symbolic addition process it 
743 appeared that this reflection was hardly used to phase 879 
7o other reflections. 
11 
36 Another success of the DELCRI  FOM was the 

136 determination of the structure ANDRO.  In this case 
0 300 reflections with E > 1.28 were used in the 0 
0 symbolic addition procedure. The reflections were 

398 
8oo linked by 2061 triplets with E 3 > 0-70. At the end of 
4o8 the symbohc addmon a unique phase was assigned to 890 
34 72 reflections. With DELCRI  two phase sets with 

102 almost equal probability were obtained (see Table 1). 131 
0 After phase extension of solution D2 a large and easily 
0 recognizable fragment of the structure was found in the 
0 

5oo subsequent Fourier map. As can be concluded from 
997 Table 1 the ~2 FOM phase sets labelled Q1 and Q2 
337 
5oo had again a highly centrosymmetric character. 
65o In Table 2 the errors of the relationships used in the 

61 
lO9 Q and DELCRI  criteria for the five discussed struc- 

tures are given. In three cases the DELCRI  relations 
have appreciably smaller errors than the Q relations. In 
the two remaining cases the errors are equally large: 
here the success of DELCRI  can be ascribed com- 
pletely to the fact that whereas the errors in the Q 
relations are based on (5) with ~03 = 0 (systematic 
errors), those in the DELCRI  relations are based on (6) 
(random errors). In the three other structures DELCRI  
is clearly even more effective. 

From the above experiments it is concluded that the 
enantiomorph-specific FOM DELCRI can be of great 
value for structure determinations in polar space 
groups such as P21. 
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Abstract 

A procedure is described to extend and refine phases 
starting from small starting sets. Tests with a number of 
real crystal structures show that the enantiomorph- 
maintaining refinement procedure [Olthof, lint & 
Schenk (1979). Acta Cryst. A35, 941-946] can be 
successful in these cases as well, provided that a few 
modifications are introduced. 

Introduction 

For quite a few structures, particularly in polar space 
groups and space groups without translational sym- 
metry, it is difficult or even impossible to define and 
maintain the enantiomorph in the course of a direct 
phase determination (e.g. Schenk, 1972; Lessinger, 
1976; Busetta, 1976; Woolfson, 1977). In these cases 
the definition of the enantiomorph can be achieved with 
enantiomorph-specific figures of merit, such as those 
based on quartets and quintets (van der Putten & 
Schenk, 1979) or three-phase seminvariants (van der 

0567-7394/81/050689-03501.00, 

Putten, Schenk & Hauptman, 1980). We have shown 
(Olthof & Schenk, 1981) that in a symbolic addition 
procedure this problem can also be solved by means of 
the figure of merit DELCRI, which selects a small set of 
approximately correct phases. DELCRI is based on the 
relationship 

~3 = --(~H -t- q)K -t- ~H-K'  (1) 

in which ~P3 is approximated by sA3: 

¢Pn • ¢PK + q~n-K -- sA3" (2) 

The A 3 values are empirical estimates, and the signs s 
are determined in the procedure. 

If, however, the subsequent numerical phase exten- 
sion and refinement is carried out by means of the 
tangent formula 

E 3 sin ((PK + ~Pz-s) 
K 

tan (¢~) = 

~-~ E 3 COS (q)K + tPH-K) 
K 
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(3) 


